/v

AARHUS UNIVERSITET

Microservices and DevOps

Scalable Microservices
Redis

Henrik Baerbak Christensen

VeV Motivation

AARHUS UNIVERSITET

« RDB’s datamodel provide a rich modeling of data and
gueries
— Tables, keys, foreign keys
— Query language, sorting, filtering, ...
— But lack a notion of objects (nested lists, nested objects, etc.)

« MongoDB’s datamodel actually is even richer
— JSON documents — can have nested documents and lists !
— Query langage, sorting, filtering is well supported
— Map Reduce

eV Motivation

AARHUS UNIVERSITET

* Redis is a key-value store and perhaps closer to the
‘heart’ of NoSQL

— In memory, extremely fast, simple API

« And...

— | have been using MongoDB since 2012 so about time to try
something new...

« Disclaimer
— | am on thin ice here, learning as you do!
— Feedback — publish good hints on forum ©

/v What to do with just the core?

AARHUS UNIVERSITET

« Key value stores require you to think in other ways
— How do you create relations? Nested objects?
— How do you query/search when you only have keys???

* The answer seems to be

— Create computed/foreign keys

« Key is not ‘8375a66b’ but ‘Room(0,0,0)' — computed from domain

« {course: ‘msdo’, participants: ‘plist 64ab2’}; pointing to a list of part.
— Create secondary indices

« Special lookup data structures that index your core data

« Any CRUD is then updates of two+ datastructures
— Add both the core data + add meta data to secondary index

/v

AARHUS UNIVERSITET

Redis

An Advanced key-value store

e Features

AARHUS UNIVERSITET
Features of Redis

Following is the list of main features of Redis:

Speed: Redis stores the whole dataset in primary memory that's why it is extremely fast. It loads up to 110,000 SETs/second
and 81,000 GETs/second can be retrieved in an entry level Linux box. Redis supports Pipelining of commands and facilitates you

to use multiple values in a single command to speed up communication with the client libraries.

Persistence: While all the data lives in memory, changes are asynchronously saved on disk using flexible policies based on
elapsed time and/or number of updates since last save. Redis supports an append-only file persistence mode. Check more on

Persistence, or read the AppendOnlyFileHowto for more information.

Data Structures: Redis supports various types of data structures such as strings, hashes, sets, lists, sorted sets with range

queries, bitmaps, hyperloglogs and geospatial indexes with radius queries.

Atomic Operations: Redis operations working on the different Data Types are atomic, so it is safe to set or increase a key,

add and remove elements from a set, increase a counter etc.

Supported Languages: Redis supports a lot of languages such as ActionScript, C, C++, C#, Clojure, Common Lisp, D, Dart,
Erlang, Go, Haskell, Haxe, lo, Java, JavaScript (Node.js), Julia, Lua, Objective-C, Perl, PHP, Pure Data, Python, R, Racket,
Ruby, Rust, Scala, Smalltalk and Tcl.

Master/Slave Replication: Redis follows a very simple and fast Master/Slave replication. It takes only one line in the
configuration file to set it up, and 21 seconds for a Slave to complete the initial sync of 10 MM key set on an Amazon EC2

instance.

Sharding: Redis supports sharding. It is very easy to distribute the dataset across multiple Redis instances, like other key-

value store.

Portable: Redis is written in ANSI C and works in most POSIX systems like Linux, BSD, Mac 0S X, Solaris, and so on. Redis is
reported to compile and work under WIN32 if compiled with Cygwin, but there is no official support for Windows currently. https;//www_javatpoint.com/features-of-redis

CS@AU Henrik Baerbak Christensen

VeV Fundamental Data Structures
AARHUS UNIVERSITET

Key-wvalue store is a special type of database storage system where data is stored in form of key and wvalue pairs.
Redis is different compared to other key-value stores because of the following:

o Redis is a different evolution path in the key-value databases where values can contain more complex data types, with
atomic operations defined on those data types.

o Redis data types are closely related to fundamental data structures and are exposed to the programmer as such,
without additional abstraction layers.

e SO0 — besides just (key, value) you also get things like lists
(arrays/ordered Iin insertion sequence) and sets
(unordered, no duplicates) and others

/v Examples

AARHUS UNIVERSITET
 The core HashMap thingy

Syntax:

redis 127.0.0.1:6379>= COMMAND KEY_MNAME

Example

redis 127.0.0.1:6379= SET javatpoint redis
OK
redis 127.0.0.1:6379> GET javatpoint

"redis"

CS@AU Henrik Baerbak Christensen 8

/v

AARHUS UNIVERSITET

Sets

redis 127.0.0.1:6379= SADD javatpoint db2
(integer) 1

redis 127.0.0.1:6379> SADD javatpoint mongodb
(integer) 1

redis 127.0.0.1:6379> SADD javatpoint db2
(integer) O

redis 127.0.0.1:6379> SADD javatpoint cassandra
(integer) 1

redis 127.0.0.1:6379> SMEMBERS javatpoint

1) "cassandra”

2) "db2"

3) "mongodb”

CS@AU Henrik Baerbak Christensen

Examples

/v Examples

AARHUS UNIVERSITET
e Lists can be stored/read from head or tall

Example

redis 127.0.0.1:6379> LPUSH javatpoint sql
(integer) 1

redis 127.0.0.1:6379> LPUSH javatpoint mysql
(integer) 2

redis 127.0.0.1:6379> LPUSH javatpoint cassandra
(integer) 3

redis 127.0.0.1:6379> LRANGE javatpoint 0 10

1) "cassandra’

2) "mysqgl”

3) "sqgl”

redis 127.0.0.1:6379>
£

CS@AU Henrik Baerbak Christensen

10

/v Examples

AARHUS UNIVERSITET
Redis Sorted Sets

Redis Sorted Sets are similar to Redis Sets but the first one has the unique feature of values stored. It

means every member of a Sorted Set is associated with a score which can be used to take the sorted set

ordered, from the smallest to the greatest score.

« Allows you to associate a score with each value in the
set, and then retrieve only values within a given score

range | ‘
- redis 127.0.0.1:6379> ZRANGE javatpoint 0 10 WITHSCORES

redis 127.0.0.1:6379> ZADD javatpoint 1 redis

. 1) "redis”
(integer) O 5y e
redis 127.0.0.1:6379> ZADD javatpoint 3 cassandra]
. 3) "cassandra’
(integer) O
4) "3"

CS@AU Henrik Baerbak Christensen 11

o Examples

AARHUS UNIVERSITET
« ‘Sorted Set’ seem like a good candidate for search indices

~-intern

12

~J

"angebyscore grade

Pt S e S S

N~ N
~J

Zrangebyscore grade

I
11
|
2

'‘Birger”
'‘Kurt”

-
B N, S e
~J

vt St el

grade

"angebyscore grade

N b= = LU N
— NJ
~J

/v Examples

AARHUS UNIVERSITET
 Hashes = the value is a HashMap itself

Redis Hashes

Redis Hashes are the perfect data type to represent objects. They used to map between the
string fields and the string values. In Redis, every hash can store up to more than 4 billion field-

value pairs.

* |.e something like
— (‘msdo’, { teacher: hbc, students: 17, website: “baerbak.cs....”})

CS@AU Henrik Baerbak Christensen 13

/v

Examples

AARHUS UNIVERSITET

e Structured objects/records
— A set of (key,value) under one single key

1)

5
2)
3)

%
4)

5)

CS@AU

> hmset c®l1 name swea year 2021 teacher hbc
> hmset c®2 name msdo year 2021 teacher hbc

- hgetall c@2

"name

|| P T
msdo

127.0.0.1:6379> hget c©2 name
"msdo"

127.0.0.1:6379> hget c@2 teacher
"hbc"

Henrik Baerbak Christensen 14

/v

AARHUS UNIVERSITET
« Bob bob

— Insert may mean two things
« A) update main structure
» B) update secondary index

— Design for Failure

« What happens if Redis dies
between A) and B)?

e Atomicity is possible
— Transactions: multi + exec

CS@AU Henrik Baerbak Christensen

Transactions

Example

redis 127.0.0.1:6379> MULTI

CK

redis 127.0.0.1:6379> EXEC

(empty list or set)

redis 127.0.0.1:6379> MULTI

OK

redis 127.0.0.1:6379> SET javatpoint redis
QUEUED

redis 127.0.0.1:6379> GET javatpoint
QUEUED

redis 127.0.0.1:6379> INCR visitors
QUEUED

redis 127.0.0.1:6379> EXEC

1) OK

2) "redis”

3) (integer) 1

15

/v

AARHUS UNIVERSITET

Playing Around

Docker

/v Playing Around

AARHUS UNIVERSITET

« Test driving Redis Is easy
— Start a Redis non-persisting DB on standard port 6379

Started non-persisting redis using docker

docker run -d --name redis-db -p 6379:6379 redis:5.60

— Start a CLI
» docker exec —ti redis-db redis-cli

— And play around in the shell

 Find the ‘latest’ redis to use on Docker Hub

CS@AU Henrik Baerbak Christensen 17

/v

AARHUS UNIVERSITET

Java Driver

Jedis

\ 4
AARHUS UNIVERSITET

Examples

« Redis commands are reflected ‘verbatim’ in Jedis

redis 127.0.0.1:6379= SADD javatpoint db2
(integer) 1

redis 127.0.0.1:6379> SADD javatpoint mongodb
(integer) 1

redis 127.0.0.1:6379> SADD javatpoint db2
(integer) O

redis 127.0.0.1:6379> SADD javatpoint cassandra
(integer) 1

redis 127.0.0.1:6379> SMEMBERS javatpoint

1) "cassandra”

2) "db2"

3) "mongodb”

public void addSets() {
//let us first add some data in our redis server using Redis SET.
String key = "members";
String memberl = "Sedarius™;
String member2 = “"Richard”;
String member3 = "Joe";

//get a jedis connection jedis connection pool
Jedis jedis = pool.getResource();
try {

//save to redis

jedis.sadd(key, memberl, member2, member3);

//after saving the data, lets retrieve them to be sure that it has really added in redis
Set<String> members = jedis.smembers(key);
for (String member : members) {

System.out.println(member);

}
} catch (JedisException e) {
//1f something wrong happen, return it back to the pool
if (null != jedis) {
pool.returnBrokenResource(jedis);
jedis = null;

1
finally {
///it's Important to return the Jedis instance te the pool once you've finished using it
if (null != jedis)
pool.returnResource(jedis);

—

https://javapointers.com/tutorial/use-redis-java-using-jedis/

CS@AU Henrik Baerbak Christensen

19

Vav Jedis Pool

AARHUS UNIVERSITET

* pool.getResource()
— Returns a jedis connection; i.e. a new socket connection

* Do not use just a single connection for all transactions
— Instead retrieve a new one for each ‘operation’ you need
» Ala ‘cavestorage.addRoom()...’
* Why not?
« Use the modern Java style ‘try-with-resources’
— try (Jedis jedis = pool.getResource()) { do stuff; }
— ... to avoid writing a zillion ‘finally { jedis.close(); }

VeV Jedis — Java Driver

AARHUS UNIVERSITET
e Java Driver

dependencies {
compile project(’':broker")
compile group: 'org.mongodb', name: 'mongo-java-driver', version: '3.6.3°

// Get the Redis java client
compile group: 'redis.clients', name: 'jedis', version: '2.9.8°

// Bind SLF4] it to the Log4] logging framework
compile group: 'org.slf4j', name: 's1f4j-log4j12', version: '1.7.25'

testCompile 'junit:junit:4.12°
testCompile 'org.hamcrest:hamcrest-library:1.3"

https://javapointers.com/tutorial/use-redis-java-using-jedis/

* Find latest driver at mvnrepository.com

CS@AU Henrik Baerbak Christensen 21

/v

AARHUS UNIVERSITET

Scaling to MSDO

eV Architecture in MS Context

AARHUS UNIVERSITET
* Promises ‘availability’ and ‘scalability’

Persistence: While all the data lives in memory, changes are asynchronously saved on disk using flexible
policies based on elapsed time and/or number of updates since last save. Redis supports an append-only

file persistence mode. Check more on Persistence, or read the AppendOnlyFileHowto for more information.

Master/Slave Replication: Redis follows a very simple and fast Master/Slave replication. It takes only one
line in the configuration file to set it up, and 21 seconds for a Slave to complete the initial sync of 10 MM

key set on an Amazon EC2 instance.

Sharding: Redis supports sharding. It is very easy to distribute the dataset across multiple Redis instances,

like other key-value store.

« Looking forward to try it ©

CS@AU Henrik Baerbak Christensen 23

